Investigation of Laser Cutting Width of LiCoO2 Coated Aluminum for Lithium-Ion Batteries
نویسندگان
چکیده
Lithium-ion batteries are widely used for many applications such as portable electronic devices and Electric Vehicles, because they have lighter weight, higher energy density, higher power density, and a higher energy-to-weight ratio than other types of batteries. Conventional contact-based cutting technology may be inefficient whenever cell design is changed since lithium-ion battery cells are not standardized. Furthermore, the conventional cutting may result in process instability and a poor cut quality due to the tool wear so that it leads to short circuits and local heat generation. These process instability and inefficiency may be solved by laser cutting due to advantages such as clean cutting edge, less deformation, applicability to almost all materials, possibility of precision processing, and easy modification of cutting path. Despite the importance of the laser cutting research, no clear definition of cutting widths has been presented, and there is lack of knowledge to understand the effect of laser parameters on cutting widths. Therefore, this research examines the surface of cathode cut by a laser and defines cutting widths such as top width, melting width, and kerf width. The relationship between the laser parameters and cutting characteristics with defined widths are studied. When the volume energy is less than 6.0172× 1010 J/m3, no active electrode material is removed. When the laser power is greater or equal to 100 W, both the top and melting widths are clearly observed. The laser power of 50 W can selectively ablate the active electrode material with the material removal rate of 32.14–55.71 mm3/min. The threshold volume energy to fully penetrate the 50 μm-thick current collector is between 9.6275× 1010–8.0229× 1010 J/m3. All clearance width is less than 20 μm, while the clearance width interestingly exceeds 20 μm when the laser power is 200 W. The effect of material properties on heat transfer using the one dimensional transient semi-infinite conduction model is investigated. In addition, five types of physical characteristics are defined and discussed.
منابع مشابه
Investigation of Physical Phenomena and Cutting Efficiency for Laser Cutting on Anode for Li-Ion Batteries
Lithium-ion batteries have a higher energy density than other secondary batteries. Among the lithium-ion battery manufacturing process, electrode cutting is one of the most important processes since poor cut quality leads to performance degradation, separator protrusion, and local electric stress concentration. This may, eventually, lead to malfunction of lithium-ion batteries or explosion. The...
متن کاملVoltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic
In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...
متن کاملDataset demonstrating effects of momentum transfer on sizing of current collector for lithium-ion batteries during laser cutting
Material properties of copper and aluminum required for the numerical simulation are presented. Electrodes used for the (paper) are depicted. This study describes the procedures of how penetration depth, width, and absorptivity are obtained from the simulation. In addition, a file format extracted from the simulation to visualize 3D distribution of temperature, velocity, and melt pool geometry ...
متن کاملEnhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery
In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...
متن کاملFabrication of All-Solid-State Lithium-Ion Cells Using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets
All-solid-state lithium-ion batteries using Li+-ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017